Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

نویسندگان

  • Viliam Makis
  • Farnoosh Naderkhani
  • Leila Jafari
چکیده

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example. Keywords—Bayesian control chart, semi-Markov decision process, quality control, partially observable process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Economic Production Quantity in Reworkable Production Systems with Inspection Errors, Scraps and Backlogging

The classical economic production quantity (EPQ) model is a well-known and commonly used inventory control technique. Common assumptions in this model are that all units produced are of perfect quality and shortage is not allowed, since in practice shortage, non-conforming product or scrap items are possible, these assumptions will underestimate the actual required quantity. The objective of th...

متن کامل

Optimal Batch Production for a Single Machine System with Accumulated Defectives and Random Rate of Rework

In this paper we consider an imperfect production system which produces good and defective items and assume that defective items can be reworked. Due to the nature of rework process we do not restrict the rework rate to be equal to normal production rate or constant and assume that it is a random variable with an arbitrary distribution function. We also assume as it is true in most real world s...

متن کامل

An Iterative Decision Rule to minimize cost of Acceptance Sampling Plan in Machine Replacement Problem

In this paper, we presented an optimal iterative decision rule for minimizing total cost in designing a sampling plan for machine replacement problem using the approach of dynamic programming and Bayesian inferences. Cost of replacing the machine and cost of defectives produced by machine has been considered in model. Concept of control threshold policy has been applied for decision making. If ...

متن کامل

A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method

In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016